
stortingscrape∗

An R package for accessing data from the Norwegian
parliament

Martin Søyland

2023-10-12

Abstract

A wide variety of parliamentary data have been made available
to the public in several countries over the last decade(s), enabling
scholars of parliamentary institutions and behavior to study a wide
range of questions. As a result, data from several countries have
been extracted, structured, and made openly available. In the pro-
cess of gathering and structuring these data, however, choices often
have to be made. And these choices have implications for whether
or how the data in question can be utilized further down the road
in subsequent analyses. In this paper, I introduce the stortingscrape
package for R. stortingscrape solves the problem of reusability for
parliamentary data from the Norwegian Storting; the package pro-
vides a standardized tool for accessing all parliamentary data from
the backend API of Stortinget. And, most importantly, the core phi-
losophy of the package is to give users agency to build and structure
the data freely. Through this paper, I discuss the underlying princi-
ples of the package, how it communicates with the API, the formats
users will receive in R, and showcase some simple workflows.

∗Thanks to the PODS group @ UiO, Department of political science for valuable
comments on an even earlier draft of the paper.

1

A variety of data produced within democratic institutions have been made
available to the public in several countries over the last decade. Be it
through frontend websites or backend APIs (Application Programming
Interface), researchers on democratic institutions have never had easier
access to large amounts of data than they do now. However, both frontend
and backend scraped data often come in formats (.html, .xml, .json,
etc) that require substantial structuring and pre-processing before they
are ready for subsequent analyses.

In this paper, I present the stortingscrape package for R (R Core
Team 2023). The core aim of the package is two-fold. First, it aims at
being a useful resource for scholars studying the Norwegian parliament
(Stortinget) by providing a set of accessible functions. Second, the
package also represent an attempt at contributing to a philosophical shift
in the realm of data gathering within the field of political science; instead
of structuring entire or parts of the data source for a specific research
questions or project, stortingscrape lets the user tailor the data to
their own needs through a set of R functions.

Although this is the first attempt at making data on Stortinget more eas-
ily accessible, stortingscrape does not live in a vacuum. A variety of
parliamentary data for different countries are available for researchers to
use freely. For parliamentary debates, Thomas, Pang, and Lee (2006)
were one of the first to gather and make available data. Their data cover
the proceedings of the 2005 House debates. Beelen et al. (2017) pro-
vided continuously updated data for the Canadian parliament, Rauh and
Schwalbach (2020) made available a collection of speech data from 9 coun-
tries, and Turner-Zwinkels et al. (2021) developed a day-by-day dataset of
MPs in Germany, Switzerland, and the Netherlands, in the period between
1947 and 2017. Eggers and Spirling (2014) structured the UK Hansard
speech data, which spans from 1802 to 2010. Odell (2017) further devel-
oped the UK Hansard data availability with the hansard package for R –
the sister of stortingscrape – where users can pull data from the UK
parliament.

2

The main goal of stortingscrape is to provide researchers with access
to any data from the Norwegian parliament easily, while also being able
to structure the data according to ones need with minimal effort. Most
importantly, the package is facilitated for weaving together different parts
of the data.stortinget.no API. The package can thus be a useful tool for
both quantitative and qualitative researchers.

I will start this paper by describing the philosophy behind the
stortingscrape package, how it relates to, and how it differs from
previous approaches. I proceed by briefly discussing the openly accessible
data.stortinget.no API and the scope of stortingscrape in this context.
Finally, I will present some minimal examples of possible workflows for
working with stortingscrape, before I summarize the paper.

Philosophy

The overarching aim of stortingscrape is to make Norwegian parliamen-
tary data easily accessible with minimal R knowledge, while also being
flexible enough for tailoring the different underlying data sources to ones
needs. Indeed, contrary to the existing sources of parliamentary data dis-
cussed above, stortingscrape gives the user as much agency as possible
in tailoring data for specific needs.

In addition to the overarching goal of prioritizing user agency, the package
is built with the following rules in mind:

1. Provide as simple data structures as possible
2. Facilitate seamless workflows between different parts of the Storting

API
3. Limit data duplication

3

data.stortinget.no

Simplify data structures

Because a lot of analysis tools in R requires 2 dimensional data formats, the
stortingscrape package prioritize converting the nested XML format to
data frames when possible. But, never at the cost of reducing data. The
tabular representation of two-dimensional data has its benefits in that it is
both intuitively easy to understand, effective for data manipulation, and
the most common data format in non computational disciplines, like the
social sciences.

However, some sources of data from the Storting API are nested in a way
which makes retaining all data in a tabular space either impossible or too
verbose. For example, the get_mp_bio() function, which extract a specific
MP’s biography by id, has data on MP personalia, parliamentary periods
the MP had a seat, vocations, literature authored by the MP, and more.
In order to make all these data workable, the resulting format from the
function call is a list of data frames for each part of the data. The different
list elements are, however, easily combined for different applications of the
data (see below).

Workflows

One of the core thoughts behind the workflow of the package is to make
it easy to combine different parts of the API and to extract the data you
actually need. A probable workflow, for instance, could be to combine
personal votes with committee membership of MPs within a session by
retrieving . . .

1. . . . session ID (data(parl_sessions) or get_parlsessions())
2. . . . all case IDs for the session (get_session_cases())
3. . . . votes for the cases (get_vote())
4. . . . personal votes (get_result_vote())
5. . . . MP biography data (get_mp_bio())
6. And, merge 4 and 5.

4

If the user wants to only extract personal votes for a specific vote – for
example, vote IDs are embedded in the URLs on the front end web-page1

– only step 4, 5, and 6 would be necessary.

In order to make the workflows easier when retrieving larger amounts of
data, most functions within stortingscrape are built to work seamlessly
with the apply() family or control flow constructs in R. From the example
above, we could iterate over all cases within our session and extract the
votes for all of them (see section XX for examples).

However, caution is advised when iterating over many calls to the API; it
is good practice to not call the API repeatedly very rapidly. Therefore,
stortingscrape functions that are expected to often be ran repeatedly
have a good_manners argument. This will make R sleep for the set amount
of seconds after calling the API. It is advised to set this argument to
between 1 and 3 seconds or higher on multiple calls to the API2. Generally,
the package is built by the recommendations given by the httr package
(Wickham 2020).3

Most of the data from Stortinget’s API and frontend web page are inter-
connected through ids for the various sources (session id, MP id, case id,
question id, vote id, etc.). stortingscrape core extraction methods are
based on these. One of the major benefits of this is that whether you want
to extract, for instance, a single question found on the frontend web page,
or all questions for a parliamentary session, the package is flexible enough
to suit both needs. It will also enable users to quickly retrieve data from
the frontend web-page as the ids are embedded in the URLs.

1https://stortinget.no
2This is based on practical use experience; the API documentation does not mention

rate limits.
3Especially, see https://cran.r-project.org/web/packages/httr/vignettes/api-

packages.html. Upgrading from httr to httr2 is on the to-do list.

5

https://stortinget.no
https://cran.r-project.org/web/packages/httr/vignettes/api-packages.html
https://cran.r-project.org/web/packages/httr/vignettes/api-packages.html

Limit redundancy

Because of the interconnectedness of the API’s data, there are some over-
lapping sources of data. For instance, both retrieval of MP general infor-
mation (get_mp()), biography (get_mp_bio()), and all MPs for a session
(get_parlperiod_mps()}) have the name of the MP in the API, but only
get_mp() will return MP names in stortingscrape, because these two
data sources are easily merged by the MP’s id.

Limiting redundancy can, potentially, come at a cost. If we, for instance,
want the name of an MP but not the remaining data from the get_mp()
function, we would still need to call get_mp() for the MPs we want the
name of. I do argue, however, that this costs will occur only in edge
cases.

Stortinget’s API

The Norwegian parliament was comparatively early in granting open ac-
cess to their data through an API when they launched data.stortinget.no
in 2012. The general purpose of the API is to provide transparency in
the form om raw data, mirroring the frontend web-page information from
data.stortinget.no. The format of the API has been fairly consistent over
the time of its existence, but there have been some small style changes
over different versions.4 stortingscrape was built under version 1.6 of
the API.

Except for content that is hidden from the public (e.g. debates behind
closed doors), the API contains all recorded data produced in Stortinget.
This includes data on individual MPs, transcripts from debates, voting
results, hearing input, and much more. For an exhaustive list of all data
sources in the API, see data.stortinget.no. The data available in the API

4See stortingscrape::get_publication() for instance

6

https://data.stortinget.no
https://data.stortinget.no
https://data.stortinget.no/dokumentasjon-og-hjelp/

can be accessed through XML or JSON format5, both of which are flexible
formats for compressing data in nested lists.

As an example, the raw data input for general information about a single
MP looks like this:

#> <person>
#> <respons_dato_tid>2023-05-26T09:59:31.1237661+02:00</respons_dato_tid>
#> <versjon>1.6</versjon>
#> <doedsdato i:nil="true"/>
#> <etternavn>Aasen</etternavn>
#> <foedselsdato>1967-02-21T00:00:00+01:00</foedselsdato>
#> <fornavn>Marianne</fornavn>
#> <id>MAAA</id>
#> <kjoenn>kvinne</kjoenn>
#> </person>

This is also the typical structure of XML in the API, although other parts
of the data are more complex in that the XML tree can be nested multiple
times. In comparison, simply calling the get_mp() function on the ID of
the MP in question returns a structured version of the same data:

get_mp("MAAA")

#> id first_name last_name birth death gender
#> 1 MAAA Marianne Aasen 1967-02-21T00:00:00 kvinne

And, in a nutshell, this is the goal of stortingscrape; convert complex
data structures into simple data structures with minimal code.

5stortingscrape exclusively works with XML.

7

Scope

The scope of stortingscrape is almost the entire API of Stortinget, with
some notable shortcomings. First, there are no functions for dynami-
cally updated data sources, such as current speaker lists6. Second, as
mentioned above, duplicated data i avoided whenever possible. Third,
certain unstandardized image sources – such as publication attachment
figures – are not supported in the package. And finally, publications from
the get_publication() function can be retrieved, but are returned in
a parsed XML data format from the rvest package (Wickham 2022a)
because these data are unstandardized across different publications.

There are three overarching sources of data in stortingscrape:

1. Parliamentary structure data
2. MP data
3. Parliamentary activity data.

These are, in some/most cases, linked by various forms of ID tags. For
example, retrieving all MPs for a given session (get_parlperiod_mps())
will give access to MP IDs (mp_id) for that session, which can be used to
extract biographies, pictures, speech activity, and more for those MPs.

Bundled data

Table 1 shows the example data available in the stortingscrape package.
For the most part, these are included for illustrative purposes; it might be
good practice to look at some of the bundled data as examples of what
function calls return.

Further, the parl_sessions and parl_periods contain the ID of parlia-
mentary sessions and periods, which can be used actively in the workflow of
the package. All get_session_* and get_parlperiod_* functions use the

6https://data.stortinget.no/dokumentasjon-og-hjelp/talerliste/

8

https://data.stortinget.no/dokumentasjon-og-hjelp/talerliste/

Table 1: Data bundled with stortingscrape

Item Title Call
cases Storting cases in the 2019-2020 session get_session_cases(’2019-2020’)
covid_relief Vote id 85196 get_vote(’85196’)
covid_relief_result Vote id 85196 results lapply(covid_relief$vote_id, get_result_vote)
interp0203 Interpellations from the 2002-2003 get_session_questions(’2002-2003’, q_type = ’interpellasjoner’)
mps4549 MPs from the 1945-1949 get_parlperiod_mps(’1945-49’)
parl_periods Parliamentary periods get_parlperiods()
parl_sessions Parliamentary sessions get_parlsessions()
vote Meta data on votes of case id 78686 get_vote(’78686’)
vote_result Roll call vote results for case 78686 lapply(vote$vote_id, get_result_vote)

Table 2: Subsets of parliamentary periods and sessions

(a) Periods

from id to
2021-10-01 2021-2025 2025-09-30
2017-10-01 2017-2021 2021-09-30
2013-10-01 2013-2017 2017-09-30

1954-01-11 1954-57 1958-01-10
1950-01-11 1950-53 1954-01-10
1945-12-04 1945-49 1950-01-10

(b) Sessions

from id to
2021-10-01 2021-2022 2022-09-30
2020-10-01 2020-2021 2021-09-30
2019-10-01 2019-2020 2020-09-30

1988-10-01 1988-89 1989-09-30
1987-10-01 1987-88 1988-09-30
1986-10-01 1986-87 1987-09-30

ID of a session or period as input. Seeing as these are updated only once
per year and every four years, respectively, these two data sets are bundled
with the package to eliminate unnecessary calls to the API. It is also possi-
ble to fetch these tables directly from the API with get_parlsessions()
and get_parlperiods(). Table 2 shows the three newest and three oldest
sessions and periods in the API at the time of writing.

Dependencies

Currently, stortingscrape depends on R version 4.2.0 or higher. Addi-
tionally, Table 3 shows the packages stortingscrape imports and sug-

9

gests. The package is made with a minimalist principle; the amount of
imports are to be kept to a minimum. Indeed, the development version
of the package is in progress of removing some of the imports in the next
release.

Table 3: Dependencies, imports, and suggested packages of
stortingscrape

Level Package Citation

Depends R (>= 4.2.0) R Core Team (2023)
Imports rvest Wickham (2022a)

httr Wickham (2020)
parallel R Core Team (2023)
stringr Wickham (2022b)
dplyr Wickham et al. (2023)

Suggests imager Barthelme (2023)
rmarkdown Allaire et al. (2023), Xie, Allaire, and Grolemund (2018),

Xie, Dervieux, and Riederer (2020)
knitr Xie (2023), Xie (2015), Xie (2014)
pscl Jackman (2020)

Example workflows

In the following section, I will discuss some examples of data extraction
with stortingscrape. I start by showing basic extraction of voting data
based on vote IDs from the frontend web-page – stortinget.no. Next, I
exemplify the large set of period and session specific data by retrieving
all MPs for a specific parliamentary period and all interpellations for a
specified parliamentary session. Finally, I show how the different functions
of the stortingscrape package works toghether – merging data on cases
with their beloninging vote results.

10

https://stortinget.no

Basic extraction.

The basic extraction of specific data from Stortinget’s API revolves around
various forms of ID tags. For example, all MPs have a unique ID, all cases
have unique IDs, all votes have unique IDs, and so on. For the following
example, I will highlight going from a case on economic measures for the
covid pandemic to party distribution on a specific vote in this case. First,
the case was relatively rapidly proposed and treated in the Storting during
the early days of June 2021.7 Here, we see the procedure steps from a gov-
ernment proposal, through work in the finance committee, to debate and
decision. Lets say a particular proposal under the case caught our eye – for
instance, vote number 61 from the Labor Party,8 asking the government to
propose a plan for implementing the International Labor Organization’s
core conventions to the Human Rights Act (menneskerettighetsloven).

As can be seen from the link to the case itself, we have an ID within the
URL: “85196”. This is the case ID. We can use the get_case() function
from stortingscrape to extract all votes related to this case:

covid_relief <- get_vote("85196")

dim(covid_relief)

#> [1] 71 21

Now we have a data frame with 71 votes over 21 variables – all belonging
to the same case. These votes can easily be explored with base R tools
such as View(). As an example, consider the following subset of votes and
variables:

7The case in its entirety can be found at https://stortinget.no/no/Saker-og-
publikasjoner/Saker/Sak/?p=85196.

8https://stortinget.no/no/Saker-og-publikasjoner/Saker/Sak/Voteringsoversikt/?p=
85196&dnid=1

11

https://stortinget.no/no/Saker-og-publikasjoner/Saker/Sak/?p=85196
https://stortinget.no/no/Saker-og-publikasjoner/Saker/Sak/?p=85196
https://stortinget.no/no/Saker-og-publikasjoner/Saker/Sak/Voteringsoversikt/?p=85196&dnid=1
https://stortinget.no/no/Saker-og-publikasjoner/Saker/Sak/Voteringsoversikt/?p=85196&dnid=1

covid_relief |>
subset(x = _,

select = c("case_id", "vote_id",
"n_for", "n_against",
"adopted")) |>

head(x = _, n = 6)

#> case_id vote_id n_for n_against adopted
#> 1 85196 17631 1 87 false
#> 2 85196 17632 6 81 false
#> 3 85196 17633 14 74 false
#> 4 85196 17634 42 46 false
#> 5 85196 17635 40 48 false
#> 6 85196 17636 15 73 false

As is usual in cases with multiple proposals and votes, the votes expected
to not be adopted are treated first. These are typically loose proposals or
proposals from the minority in the committee. The proposals highlighted
above are, for instance, all from the party Red (Rødt) who only had one
representative in this parliamentary period.

In our running example, however, we are only interested in the result of
proposal 217 from the Labor Party, we can extract the ID of this par-
ticular vote from our data by searching for the proposal number in the
vote_topic variable:

prop217 <- covid_relief$vote_topic |>
grepl("217", x = _)

covid_relief$vote_topic[prop217]

#> [1] "Forslag nr. 217 på vegne av A."

12

To get the personal MP vote results for this particular vote, we can use
the get_result_vote() function:9

covid_relief_result <- get_result_vote(covid_relief$vote_id[prop217])

covid_relief_result |>
subset(x = _, select = c("vote_id", "mp_id",

"party_id", "vote")) |>
head(x = _, n = 6)

#> vote_id mp_id party_id vote
#> 1 17689 SSA H mot
#> 2 17689 EAG H ikke_tilstede
#> 3 17689 PTA FrP mot
#> 4 17689 DTA A ikke_tilstede
#> 5 17689 KAAN SV for
#> 6 17689 KAND Sp for

Even from looking only at just the first six rows of the data, the read-
ers who know the Norwegian political system will suspect that this vote
was an opposition versus government vote, but we can also easily get the
distribution of votes by party as shown in Table 4.

As suspected, the vote was divided between the opposition (A, MDG, R,
SP, and SV) and government parties (H, KrF, V, and FrP), and was not
adopted by a thin margin of 2 votes. Of course, this is a minimal example,
but I will highlight more methods for extracting multiple votes below.

Period specific data.

Most of the mentioned IDs for Stortinget’s data are not only extractable
from the frontend web-page, but also from the backend API. These data

9Here, “for” is “for”, “mot” is “against”, and “ikke_tilstede” is “absent”.

13

Table 4: Vote distibution

Absent Nay Yea Sum

A 21 0 27 48
FrP 12 14 0 26
H 22 23 0 45
KrF 5 3 0 8
MDG 0 0 1 1
R 0 0 1 1
Sp 12 0 8 20
SV 6 0 5 11
Uav 0 1 0 1
V 5 3 0 8

Sum 83 44 42 169

can be retrieved by various forms of parliamentary period or session spe-
cific functions in stortingscrape. In this section, I will show how to get
all MPs for a specific parliamentary period and all interpellations for a
parliamentary session.

The IDs for parliamentary sessions and periods is, as discussed above,
bundled with the package. The parliamentary period IDs is mainly used
for MP data; Norwegian MPs are elected for 4 year terms, with no con-
stitutional arrangement for snap elections. The MP data also stretch way
further back in time than the rest of the API:

mps4549 <- get_parlperiod_mps("1945-49")

mps4549 |>
subset(x = _, select = c("mp_id", "county_id", "party_id")) |>
head(x = _, n = 6)

14

#> mp_id county_id party_id
#> 1 AAKU VA A
#> 2 AARY AA A
#> 3 ALKJ He H
#> 4 ALVÅ Fi NKP
#> 5 AMSK ST A
#> 6 ANBØ SF V

From these data, the path is short not only to extracting more rich data
on individual MPs, as will be demonstrated below, but also on counties
(get_counties()), topics (get_topics()), and so on.

Content data from parliamentary activities use parliamentary session
IDs rather than period IDs. Do note, however, that before the turn of
the century, are These functions are standardized to function names as
get_session_*. For example, we can access all interpellations from the
2002-2003 session with the get_session_questions() function:

interp0203 <- get_session_questions("2002-2003", q_type = "interpellasjoner")

dim(interp0203)

#> [1] 22 26

Here, we have 22 interpellations over 26 different variables. Unfortunately,
the API only gives the question and not the answer for the different types
of question requests. Retrieval of question answers is a daunting task, be-
cause it is only accessible through the unstandardized get_publication()
function. We can, however, extract the topics of the interpellation by ex-
tracting the corresponding topics from the get_topic() function:

15

tops <- get_topics()

interp0203$topics <- lapply(interp0203$topic_ids, function(x) {

top_match <- tops$topics$id %in% unlist(strsplit(x, "/"))
top_ids <- tops$topics$main_topic_id[top_match]

paste(
tops$main_topics$name[which(tops$main_topics$id %in% top_ids)],
collapse = "/"

)

}) |> unlist()

The distribution of topics in interpellations during the 2002-2003 parlia-
mentary session, shown in Figure 1, pictures local administration, busi-
ness, healthcare, and so on as the most prominent topics.

Merging data – simple

As I have shown above, connecting the different parts of Stortingets API
is a pivotal part of stortingscrape. A minimal example, consider Gro
Harlem Brundtland’s base information:

mp_base <- get_mp("GHB", good_manners = 2)
mp_base

#> response_date version death last_name
#> 1 2023-10-12T12:47:26.8019234+02:00 1.6 Brundtland
#> birth first_name id gender
#> 1 1939-04-20T00:00:00 Gro Harlem GHB kvinne

16

0

2

4

6

FINANSER

LANDBRUK

UTENRIKSSAKER

RETTSVESEN

UTDANNING

HELSEVESEN

NÆRINGSLIV

LOKALFORVALTNING

C
ou

nt

Figure 1: Topic distribution of interpellations in the 2002-2003 session.

17

Although sparse, information from the get_mp() function could be useful
in real world applications, although its variables (e.g gender and birthday)
are static. If we want further information on Gro Harlem Brundtland, we
need to also call the get_mp_bio() function. This function returns a list
of 10 different data frames on the MP:

mp_bio <- get_mp_bio("GHB", good_manners = 2) # Added wait in order to not fetch
too fast on compile

names(mp_bio)

#> [1] "root" "literature" "leave_of_absence" "personalia"
#> [5] "father" "mother" "parl_periods" "parl_positions"
#> [9] "vocation" "other_positions"

We can the proceed by merging dynamic data – committee membership
for instance – with the static data:

mp_bio$parl_positions$id <- "GHB"

mp <- merge(x = mp_base, y = mp_bio$parl_positions,
by = "id", all.y = TRUE)

Table 5: Subset of Gro Harlem Brundtland’s committee membership

id from_year to_year committee_name committee_type
GHB 1974 1976 Miljøverndepartementet REGJ
GHB 1979 1980 Finanskomiteen FAG
GHB 1980 1981 Utenriks- og konstitusjonskomi [...] FAG
GHB 1981 1985 Den utvidede utenriks- og kons [...] KOMI
GHB 1985 1986 Valgkomiteen KOMI
GHB 1986 1989 Statsministerens kontor REGJ
GHB 1989 1990 Valgkomiteen KOMI
GHB 1996 1997 Den utvidede utenrikskomité KOMI

18

Merging data – advanced

As a more advanced example of the workflow of the package, I will show-
case how to get party distribution on a vote. You can request data on all
cases in a parliamentary session:

cases <- get_session_cases("2019-2020")

The cases object will now contain all cases treated in the 2019-2020 par-
liamentary session. Do note that cases is a list of 4 elements (“root”,
“topics”, “proposers”, and “spokespersons”). In the following, I use the
case ID in “root” to access vote information for a case – in this example
the 48th row in the data:10

vote <- get_vote(cases$root$id[48])

The output gives us a data frame of 3 votes over 22 variables, whereof
one is the vote ID for each of the two votes. We can use this to retrieve
roll call data, using the get_result_vote() function iteratively through
lapply(), for(), or any other control flow constructs:

vote_result <- lapply(vote$vote_id, get_result_vote, good_manners = 2)

names(vote_result) <- vote$vote_id

vote_result <- do.call(rbind, vote_result)

vote_result |>

10I will note that it is possible to extract vote information on all cases by either using the
apply() family or control flow constructs available in R. However, in this case, calling
the API 614 (nrow(cases[["root"]])) times, will require to pause between calls
(with the good_manners argument). This will give a running time of approximately
20 minutes.

19

subset(x = _, select = c("vote_id", "mp_id", "party_id", "vote")) |>
head(x = _, n = 6)

#> vote_id mp_id party_id vote
#> 15404.1 15404 SSA H against
#> 15404.2 15404 EAG H against
#> 15404.3 15404 PTA FrP against
#> 15404.4 15404 DTA A against
#> 15404.5 15404 KAAN SV against
#> 15404.6 15404 MAA Sp absent

Finally, we can make a proportion table over voting results for the votes:

table(vote_result$vote,vote_result$vote_id,
dnn = c("Vote result", "Vote ID"))

#> Vote ID
#> Vote result 15404 15405 15406
#> absent 82 82 82
#> against 86 41 46
#> for 1 46 41

In this case, vote 15404 was only supported by one MP (Bjørnar Moxnes
of the Red Party), and not adopted; vote 15405 was narrowly addopted;
and, vote 15406 narrowly rejected. And, of course, ~49% of the elected
MPs were absent.

Work in progress

One ongoing project in relation to the stortingscrape package is to make
a more seamless pipeline for analyzing voting behavior through the noRc

20

package. The package is currently only available on github11, aims at pro-
viding users with a one-line function call that returns a rollcall object
from the pscl package (Jackman 2020). The package only has one exclu-
sive function, rc_get(), which has three arguments: vote IDs, whether to
include vote information, and whether to include MP information. In a
minimal example, we can fetch the same vote as we did above – the Labor
Party’s (A) proposal in the Covid Relief case:

prop217 <- rc_get("17689")

class(prop217)

#> [1] "rollcall"

The rollcall class is a part of the pscl package, which has a set of tools
for studying voting behavior. For instance, we can extract a summary of
the vote:

summary(prop217)

#>
#> Summary of rollcall object prop217
#>
#> Description: Vote results for votes in Stortinget
#> Source: data.stortinget.no
#>
#> Number of Legislators: 169
#> Number of Roll Call Votes: 1
#>
#>

11devtools::install_github("martigso/noRc")

21

#> Using the following codes to represent roll call votes:
#> Yea: 1
#> Nay: 0
#> Abstentions: NA
#> Not In Legislature: -1
#>
#>
#> Vote Summary:
#> Count Percent
#> -1 (notInLegis) 83 49.1
#> 0 (nay) 44 26.0
#> 1 (yea) 42 24.9
#>
#> Use summary(prop217,verbose=TRUE) for more detailed information.

Further, we can retrieve multiple votes easily by supplying vote IDs for
the votes we want to get. If we extract all vote IDs from the Covid Relief
case that are not unanimous, we can get a rollcall object with all these
votes in one go (but it will take some time):

rc_votes <- covid_relief[which(as.numeric(covid_relief$n_for) > 0),]

vote_mat <- rc_get(rc_votes$vote_id,
include_voteinfo = TRUE,
include_mpinfo = TRUE)

From here, we can analyze the votes with the standard pscl tools descrip-
tively, or estimate a rollcall model such as pscl::ideal() or oc::oc()
(Poole et al. 2023):

library(oc)
covid_oc <- oc(vote_mat, polarity = c("ALES", "UIL"), minvotes = 5, lop = 0.1)

22

The data is, of course, quite sparse in our example case. But Figure 2 still
shows that the Optimal Classification Roll Call Scaling captures govern-
ment versus opposition on dimension 1, and edge party versus “establish-
ment parties” on dimension 2.

23

BJMO

JBO

PST UIL

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

−0.50 −0.25 0.00 0.25 0.50 0.75
Dimension 1

D
im

en
si

on
 2

SV A Sp H KrF V FrP

Figure 2: OC Roll Call Scaling for all votes in case 85196

24

References
Allaire, JJ, Yihui Xie, Christophe Dervieux, Jonathan McPherson, Javier

Luraschi, Kevin Ushey, Aron Atkins, et al. 2023. Rmarkdown: Dy-
namic Documents for r. https://github.com/rstudio/rmarkdown.

Barthelme, Simon. 2023. Imager: Image Processing Library Based on
’CImg’. https://CRAN.R-project.org/package=imager.

Beelen, Kaspar, Timothy Alberdingk Thijm, Christopher Cochrane, Kees
Halvemaan, Graeme Hirst, Michael Kimmins, Sander Lijbrink, et al.
2017. “Digitization of the Canadian Parliamentary Debates.” Cana-
dian Journal of Political Science/Revue Canadienne de Science Poli-
tique, 1–16.

Eggers, Andrew C., and Arthur Spirling. 2014. “Electoral Security as a
Determinant of Legislator Activity, 1832–1918: New Data and Meth-
ods for Analyzing British Political Development.” Legislative Studies
Quarterly 39 (4): 593–620.

Jackman, Simon. 2020. pscl: Classes and Methods for R Developed in
the Political Science Computational Laboratory. Sydney, New South
Wales, Australia: United States Studies Centre, University of Sydney.
https://github.com/atahk/pscl/.

Odell, Evan. 2017. hansard: Provides Easy Downloading Capabilities for
the UK Parliament API. https://doi.org/10.5281/zenodo.591264.

Poole, Keith, Jeffrey Lewis, James Lo, Royce Carroll, and William May.
2023. Oc: Optimal Classification Roll Call Analysis Software. https:
//CRAN.R-project.org/package=oc.

R Core Team. 2023. R: A Language and Environment for Statistical
Computing. Vienna, Austria: R Foundation for Statistical Computing.
https://www.R-project.org/.

Rauh, Christian, and Jan Schwalbach. 2020. “The ParlSpeech V2 data set:
Full-text corpora of 6.3 million parliamentary speeches in the key leg-
islative chambers of nine representative democracies.” Harvard Data-
verse. https://doi.org/10.7910/DVN/L4OAKN.

Thomas, Matt, Bo Pang, and Lillian Lee. 2006. “Get Out the Vote: Deter-
mining Support or Opposition from Congressional Floor-Debate Tran-

25

https://github.com/rstudio/rmarkdown
https://CRAN.R-project.org/package=imager
https://github.com/atahk/pscl/
https://doi.org/10.5281/zenodo.591264
https://CRAN.R-project.org/package=oc
https://CRAN.R-project.org/package=oc
https://www.R-project.org/
https://doi.org/10.7910/DVN/L4OAKN

scripts.” In Proceedings of the 2006 Conference on Empirical Methods
in Natural Language Processing, 327–35. Association for Computa-
tional Linguistics.

Turner-Zwinkels, Tomas, Oliver Huwyler, Elena Frech, Philip Manow, Ste-
fanie Bailer, Niels D. Goet, and Simon Hug. 2021. “Parliaments Day-
by-Day: A New Open Source Database to Answer the Question of
Who Was in What Parliament, Party, and Party-Group, and When.”
Legislative Studies Quarterly 47 (3). https://onlinelibrary.wiley.com/
doi/abs/10.1111/lsq.12359.

Wickham, Hadley. 2020. Httr: Tools for Working with URLs and HTTP.
https://CRAN.R-project.org/package=httr.

———. 2022a. Rvest: Easily Harvest (Scrape) Web Pages. https://
CRAN.R-project.org/package=rvest.

———. 2022b. Stringr: Simple, Consistent Wrappers for Common String
Operations. https://CRAN.R-project.org/package=stringr.

Wickham, Hadley, Romain François, Lionel Henry, Kirill Müller, and
Davis Vaughan. 2023. Dplyr: A Grammar of Data Manipulation.
https://CRAN.R-project.org/package=dplyr.

Xie, Yihui. 2014. “Knitr: A Comprehensive Tool for Reproducible Re-
search in R.” In Implementing Reproducible Computational Research,
edited by Victoria Stodden, Friedrich Leisch, and Roger D. Peng.
Chapman; Hall/CRC.

———. 2015. Dynamic Documents with R and Knitr. 2nd ed. Boca
Raton, Florida: Chapman; Hall/CRC. https://yihui.org/knitr/.

———. 2023. Knitr: A General-Purpose Package for Dynamic Report
Generation in r. https://yihui.org/knitr/.

Xie, Yihui, J. J. Allaire, and Garrett Grolemund. 2018. R Markdown:
The Definitive Guide. Boca Raton, Florida: Chapman; Hall/CRC.
https://bookdown.org/yihui/rmarkdown.

Xie, Yihui, Christophe Dervieux, and Emily Riederer. 2020. R Mark-
down Cookbook. Boca Raton, Florida: Chapman; Hall/CRC. https:
//bookdown.org/yihui/rmarkdown-cookbook.

26

https://onlinelibrary.wiley.com/doi/abs/10.1111/lsq.12359
https://onlinelibrary.wiley.com/doi/abs/10.1111/lsq.12359
https://CRAN.R-project.org/package=httr
https://CRAN.R-project.org/package=rvest
https://CRAN.R-project.org/package=rvest
https://CRAN.R-project.org/package=stringr
https://CRAN.R-project.org/package=dplyr
https://yihui.org/knitr/
https://yihui.org/knitr/
https://bookdown.org/yihui/rmarkdown
https://bookdown.org/yihui/rmarkdown-cookbook
https://bookdown.org/yihui/rmarkdown-cookbook

Appendix

27

	Philosophy
	Simplify data structures
	Workflows
	Limit redundancy

	Stortinget's API
	Scope
	Bundled data
	Dependencies

	Example workflows
	Basic extraction.
	Period specific data.
	Merging data – simple
	Merging data – advanced

	Work in progress
	References
	Appendix

